pwmat:pwmlff:install
差别
这里会显示出您选择的修订版和当前版本之间的差别。
| pwmat:pwmlff:install [2024/02/04 18:19] – 创建 pengge | pwmat:pwmlff:install [2024/02/05 11:13] (当前版本) – pengge | ||
|---|---|---|---|
| 行 1: | 行 1: | ||
| - | <WRAP hide> | + | ====== Installation ====== |
| - | <wrap round tip> a </wrap> | + | ===== PWMLFF 安装 (以Mcloud为例) ===== |
| + | |||
| + | PWMLFF包含Fortran、Python和CUDA加速等,需要在包含Python环境、gcc编译器、GPU硬件条件下进行安装 | ||
| + | |||
| + | |||
| + | ==== 方式一:使用Mcloud现有环境 ==== | ||
| + | |||
| + | mcloud已有配置好的conda环境,可以直接调用,避免自己安装anaconda, | ||
| + | |||
| + | - 加载环境 | ||
| + | |||
| + | <code> | ||
| + | module load intel/ | ||
| + | source / | ||
| + | source / | ||
| + | conda activate mlff | ||
| + | export CUDA_HOME=/ | ||
| + | </ | ||
| + | |||
| + | - [[install# | ||
| + | |||
| + | ==== 方式二:重新创建虚拟环境 ==== | ||
| + | |||
| + | - 首先加载编译PWMLFF所需的编译器(**intel ≥ 2016 , gcc ≥ 7.0**)和cuda (推荐**11.6**) | ||
| + | |||
| + | < | ||
| + | module load cuda/11.6 intel/ | ||
| + | source / | ||
| + | </ | ||
| + | |||
| + | - 在用户目录下创建一个新 python 虚拟环境,建议手动下载并使用Anaconda3进行环境管理(搜索引擎搜索Linux安装anaconda3教程)。 | ||
| + | |||
| + | 可以使用该命令直接下载Anaconda3到服务器目录中: | ||
| + | |||
| + | <code bash> | ||
| + | curl https:// | ||
| + | </ | ||
| + | |||
| + | conda安装完成后,创建虚拟环境,环境中需指定安装python3.8解释器,其它版本可能会出现包依赖冲突,之后的编译工作均在该虚拟环境中进行 | ||
| + | |||
| + | < | ||
| + | conda create -n PWMLFF python=3.8 | ||
| + | </ | ||
| + | |||
| + | - 虚拟环境安装完成后重新激活该环境 | ||
| + | |||
| + | < | ||
| + | conda deactivate | ||
| + | conda activate PWMLFF | ||
| + | </ | ||
| + | |||
| + | - 安装PWMLFF所需的第三方依赖包 | ||
| + | |||
| + | <code python> | ||
| + | pip install pymatgen scikit-learn-intelex numba horovod | ||
| + | </ | ||
| + | |||
| + | <code python> | ||
| + | conda install pytorch==1.12.1 cudatoolkit=11.6 -c pytorch -c conda-forge | ||
| + | </ | ||
| + | |||
| + | 或 | ||
| + | |||
| + | <code python> | ||
| + | conda install pytorch==1.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia | ||
| + | </ | ||
| + | |||
| + | 如需安装其他版本请查阅[[https:// | ||
| + | |||
| + | - 完成第三方依赖包安装后进行PWMLFF的编译安装。 | ||
| + | |||
| + | ==== 下载及编译安装 ==== | ||
| + | |||
| + | |||
| + | * 在线安装: | ||
| + | |||
| + | <code bash> | ||
| + | $ git clone https:// | ||
| + | 或 | ||
| + | $ git clone https:// | ||
| + | |||
| + | $ cd PWMLFF/ | ||
| + | $ srun -p 3090 --gres=gpu: | ||
| + | </ | ||
| + | |||
| + | **(Mstation用户通过`nvidia-smi`可查看到GPU信息,将`srun -p 3090 sh build.sh`替换为`sh build.sh`)**。 | ||
| + | |||
| + | * 源码下载: | ||
| + | * https:// | ||
| + | * https:// | ||
| + | |||
| + | 或者使用以下命令下载源码到用户目录下并解压安装: | ||
| + | |||
| + | <code bash> | ||
| + | $ wget https:// | ||
| + | 或 | ||
| + | $ wget https:// | ||
| + | |||
| + | $ unzip master.zip | ||
| + | $ cd PWMLFF-master/ | ||
| + | $ srun -p 3090 --gres=gpu: | ||
| + | </ | ||
| + | |||
| + | * 编译完成后环境变量需更新,直接执行以下命令: | ||
| + | |||
| + | <code bash> | ||
| + | source ~/.bashrc | ||
| + | </ | ||
| + | |||
| + | 至此完成了PWMLFF的全部编译安装,后续使用时也要保证在PWMLFF的虚拟环境中,并加载完成intel编译器。 | ||
| + | |||
| + | ===== Lammps_for_PWMLFF安装 ===== | ||
| + | |||
| + | 使用PWMLFF完成力场模型构建后需使用配套的Lammps_for_PWMLFF进行分子动力学模拟,以下是Lammps_for_PWMLFF的详细安装步骤: | ||
| + | |||
| + | - 加载编译所需模块 (以Mcloud为例) | ||
| + | |||
| + | < | ||
| + | module load intel/ | ||
| + | </ | ||
| + | |||
| + | * 在线安装: | ||
| + | |||
| + | <code bash> | ||
| + | $ git clone https:// | ||
| + | 或 | ||
| + | $ git clone https:// | ||
| + | |||
| + | $ cd Lammps_for_PWMLFF/ | ||
| + | $ make clean | make # 执行编译 | ||
| + | $ cd Lammps_for_PWMLFF/ | ||
| + | $ make clean-all | make mpi -j 6 # 这里如果报编译错误重新执行该指令编译即可 | ||
| + | </ | ||
| + | |||
| + | * 源码下载: | ||
| + | * https: | ||
| + | * https: | ||
| + | |||
| + | < | ||
| + | 或者使用以下命令下载源码到用户目录下并解压安装: | ||
| + | </ | ||
| + | |||
| + | <code bash> | ||
| + | $ wget https:// | ||
| + | 或 | ||
| + | $ wget https:// | ||
| + | |||
| + | $ unzip master.zip | ||
| + | $ cd Lammps_for_PWMLFF/ | ||
| + | $ make clean | make # 执行编译 | ||
| + | $ cd Lammps_for_PWMLFF/ | ||
| + | $ make clean-all | make mpi -j 6 # 这里如果报编译错误重新执行该指令编译即可 | ||
| + | </ | ||
| + | |||
| + | - 将Lammps_for_PWMLFF写入环境变量中 | ||
| + | |||
| + | <code bash> | ||
| + | vim ~/ | ||
| + | export PATH=absolute/ | ||
| + | source ~/.bashrc | ||
| + | </ | ||
| + | |||
| + | 以上完成Lammps_for_PWMLFF的全部编译安装工作,后续PWMLFF的使用中会自动调用该版本Lammps包进行分子动力学模拟 | ||
| + | |||
| + | |||
| + | ---- | ||
| + | |||
| + | 在提交训练任务时,注意任务脚本中需要确保加载相关环境,如下所示: | ||
| + | |||
| + | < | ||
| + | module load intel/ | ||
| + | source / | ||
| + | source / | ||
| + | conda activate mlff | ||
| + | export MKL_SERVICE_FORCE_INTEL=1 | ||
| + | export MKL_THREADING_LAYER=GNU | ||
| + | export I_MPI_HYDRA_BOOTSTRAP=slurm | ||
| + | export I_MPI_PMI_LIBRARY=/ | ||
| + | </code> | ||
| + | |||
| + | * 第5、6行环境解决 pytorch 与 numpy 版本不匹配的问题 | ||
| + | * 最后两行环境解决多lammps任务无法同时并行的问题 | ||
| - | <WRAP round tip> | ||
| - | </ | ||
| - | </ | ||
pwmat/pwmlff/install.1707041977.txt.gz · 最后更改: 2024/02/04 18:19 由 pengge
