mstation:pwmat:pwmlffdemo
差别
这里会显示出您选择的修订版和当前版本之间的差别。
| mstation:pwmat:pwmlffdemo [2024/08/23 11:32] – 创建 pengge | mstation:pwmat:pwmlffdemo [2024/08/23 11:44] (当前版本) – pengge | ||
|---|---|---|---|
| 行 36: | 行 36: | ||
| prepend-path PATH | prepend-path PATH | ||
| - | prepend-path LD_LIBRARY_PATH | + | prepend-path LD_LIBRARY_PATH |
| + | prepend-path LD_LIBRARY_PATH | ||
| </ | </ | ||
| - | <WRAP center round todo 10%> | + | === / |
| - | 1. 许可文件必须是 pwmat.lic | + | |
| - | 2. -lic-path 后面的参数是 '' | + | <code bash> |
| + | # | ||
| + | ## modules modulefile | ||
| - | <wrap indent> | + | module load intel/2020 cuda/11.8 |
| - | 3. 可以用相对路径 | + | set prefix |
| + | module-whatis " | ||
| + | prepend-path PATH $prefix/ | ||
| + | prepend-path PYTHONPATH | ||
| + | prepend-path LD_LIBRARY_PATH $prefix/ | ||
| + | </ | ||
| - | 4. 目录可以不加引号 | + | ==== 脚本 ==== |
| - | </WRAP> | + | === dp_cpu_lmps === |
| + | |||
| + | <code bash> | ||
| + | cat run_cpu.job | ||
| + | #!/bin/sh | ||
| + | #SBATCH --job-name=hfo2nep | ||
| + | #SBATCH --nodes=1 | ||
| + | #SBATCH --ntasks-per-node=12 | ||
| + | ###SBATCH --gres=gpu: | ||
| + | ##SBATCH --cpus-per-task=1 | ||
| + | #SBATCH --partition=gpu | ||
| + | |||
| + | export CUDA_VISIBLE_DEVICES="" | ||
| + | |||
| + | module load conda/ | ||
| + | |||
| + | source / | ||
| + | |||
| + | conda activate pwmlff2024.5 | ||
| + | |||
| + | export PYTHONPATH=/ | ||
| + | export PATH=/ | ||
| + | |||
| + | |||
| + | export LD_LIBRARY_PATH=$LD_LIBRARY_PATH: | ||
| + | |||
| + | |||
| + | export PATH=/ | ||
| + | export LD_LIBRARY_PATH=/ | ||
| + | |||
| + | # use cpu | ||
| + | mpirun -np 12 lmp_mpi -in in.lammps | ||
| + | </ | ||
| + | |||
| + | === dp_fortran_lmps === | ||
| + | |||
| + | <code bash> | ||
| + | cat run_cpu.job | ||
| + | #!/bin/sh | ||
| + | #SBATCH --job-name=hfo2nep | ||
| + | #SBATCH --nodes=1 | ||
| + | #SBATCH --ntasks-per-node=12 | ||
| + | ###SBATCH --gres=gpu: | ||
| + | ##SBATCH --cpus-per-task=1 | ||
| + | #SBATCH --partition=gpu | ||
| + | |||
| + | export CUDA_VISIBLE_DEVICES="" | ||
| + | |||
| + | module load intel/ | ||
| + | |||
| + | export PATH=/ | ||
| + | #export LD_LIBRARY_PATH=/ | ||
| + | |||
| + | # use cpu | ||
| + | mpirun -np 12 lmp_mpi -in in.lammps | ||
| + | </ | ||
| + | |||
| + | <code bash> | ||
| + | cat run_cpu2.job | ||
| + | #!/bin/sh | ||
| + | #SBATCH --job-name=hfo2nep | ||
| + | #SBATCH --nodes=1 | ||
| + | #SBATCH --ntasks-per-node=12 | ||
| + | ###SBATCH --gres=gpu: | ||
| + | ##SBATCH --cpus-per-task=1 | ||
| + | #SBATCH --partition=gpu | ||
| + | |||
| + | export CUDA_VISIBLE_DEVICES="" | ||
| + | |||
| + | module load intel/2020 lammps4pwmlff/ | ||
| + | |||
| + | # use cpu | ||
| + | mpirun -np 12 lmp_mpi -in in.lammps | ||
| + | </ | ||
| + | |||
| + | === dp_gpu_lmps === | ||
| + | |||
| + | <code bash> | ||
| + | cat run_gpu.job | ||
| + | #!/bin/sh | ||
| + | #SBATCH --job-name=hfo2nep | ||
| + | #SBATCH --nodes=1 | ||
| + | #SBATCH --ntasks-per-node=4 | ||
| + | ###SBATCH --gres=gpu: | ||
| + | ##SBATCH --cpus-per-task=1 | ||
| + | #SBATCH --partition=gpu | ||
| + | |||
| + | module load conda/ | ||
| + | |||
| + | source / | ||
| + | |||
| + | conda activate pwmlff2024.5 | ||
| + | |||
| + | export PYTHONPATH=/ | ||
| + | export PATH=/ | ||
| + | |||
| + | |||
| + | export LD_LIBRARY_PATH=$LD_LIBRARY_PATH: | ||
| + | |||
| + | |||
| + | export PATH=/ | ||
| + | export LD_LIBRARY_PATH=/ | ||
| + | |||
| + | mpirun -np 4 lmp_mpi_gpu -in in.lammps | ||
| + | </ | ||
| + | |||
| + | <code bash> | ||
| + | cat run_gpu2.job | ||
| + | #!/bin/sh | ||
| + | #SBATCH --job-name=hfo2nep | ||
| + | #SBATCH --nodes=1 | ||
| + | #SBATCH --ntasks-per-node=4 | ||
| + | ###SBATCH --gres=gpu: | ||
| + | ##SBATCH --cpus-per-task=1 | ||
| + | #SBATCH --partition=gpu | ||
| + | |||
| + | module load lammps4pwmlff/ | ||
| + | |||
| + | mpirun -np 4 lmp_mpi_gpu -in in.lammps | ||
| + | </ | ||
| + | |||
| + | === dp_train === | ||
| + | |||
| + | <code bash> | ||
| + | cat train.job | ||
| + | #!/bin/sh | ||
| + | #SBATCH --job-name=hfo2nep | ||
| + | #SBATCH --nodes=1 | ||
| + | #SBATCH --ntasks-per-node=1 | ||
| + | ###SBATCH --gres=gpu: | ||
| + | ##SBATCH --cpus-per-task=1 | ||
| + | #SBATCH --partition=gpu | ||
| + | |||
| + | module load conda/ | ||
| + | |||
| + | source / | ||
| + | |||
| + | conda activate pwmlff2024.5 | ||
| + | |||
| + | export PYTHONPATH=/ | ||
| + | export PATH=/ | ||
| + | |||
| + | |||
| + | PWMLFF train dp_cu.json | ||
| + | |||
| + | PWMLFF test test.json | ||
| + | </ | ||
| + | |||
| + | <code bash> | ||
| + | cat train2.job | ||
| + | #!/bin/sh | ||
| + | #SBATCH --job-name=hfo2nep | ||
| + | #SBATCH --nodes=1 | ||
| + | #SBATCH --ntasks-per-node=1 | ||
| + | ###SBATCH --gres=gpu: | ||
| + | ##SBATCH --cpus-per-task=1 | ||
| + | #SBATCH --partition=gpu | ||
| + | |||
| + | module load conda/ | ||
| + | |||
| + | source / | ||
| + | |||
| + | conda activate pwmlff2024.5 | ||
| + | |||
| + | PWMLFF train dp_cu.json | ||
| + | |||
| + | PWMLFF test test.json | ||
| + | </ | ||
| + | |||
| + | === nn_train === | ||
| + | |||
| + | <code bash> | ||
| + | cat run.sh | ||
| + | #!/bin/sh | ||
| + | #SBATCH --partition=3090, | ||
| + | #SBATCH --job-name=mlff | ||
| + | #SBATCH --nodes=1 | ||
| + | #SBATCH --ntasks-per-node=1 | ||
| + | #SBATCH --gres=gpu: | ||
| + | #SBATCH --gpus-per-task=1 | ||
| + | |||
| + | source / | ||
| + | conda activate PWMLFF | ||
| + | |||
| + | module load pwmlff/ | ||
| + | |||
| + | PWMLFF train nn_ec.json | ||
| + | |||
| + | PWMLFF test test.json | ||
| + | </ | ||
| + | |||
| + | === nep_lmps === | ||
| + | |||
| + | <code bash> | ||
| + | cat cpu/ | ||
| + | #!/bin/sh | ||
| + | #SBATCH --job-name=hfo2nep | ||
| + | #SBATCH --nodes=1 | ||
| + | #SBATCH --ntasks-per-node=12 | ||
| + | ###SBATCH --gres=gpu: | ||
| + | ##SBATCH --cpus-per-task=1 | ||
| + | #SBATCH --partition=cpu | ||
| + | |||
| + | #export CUDA_VISIBLE_DEVICES="" | ||
| + | |||
| + | module load conda/ | ||
| + | |||
| + | source / | ||
| + | |||
| + | conda activate pwmlff2024.5 | ||
| + | |||
| + | export PYTHONPATH=/ | ||
| + | export PATH=/ | ||
| + | |||
| + | |||
| + | export LD_LIBRARY_PATH=$LD_LIBRARY_PATH: | ||
| + | |||
| + | |||
| + | export PATH=/ | ||
| + | export LD_LIBRARY_PATH=/ | ||
| + | |||
| + | # use cpu | ||
| + | mpirun -np 12 lmp_mpi -in in.lammps | ||
| + | </ | ||
| + | |||
| + | <code bash> | ||
| + | cat gpu/ | ||
| + | #!/bin/sh | ||
| + | #SBATCH --job-name=hfo2nep | ||
| + | #SBATCH --nodes=1 | ||
| + | #SBATCH --ntasks-per-node=4 | ||
| + | ###SBATCH --gres=gpu: | ||
| + | ##SBATCH --cpus-per-task=1 | ||
| + | #SBATCH --partition=gpu | ||
| + | |||
| + | module load conda/ | ||
| + | |||
| + | source / | ||
| + | |||
| + | conda activate pwmlff2024.5 | ||
| + | |||
| + | export PYTHONPATH=/ | ||
| + | export PATH=/ | ||
| + | |||
| + | |||
| + | export LD_LIBRARY_PATH=$LD_LIBRARY_PATH: | ||
| + | |||
| + | |||
| + | export PATH=/ | ||
| + | export LD_LIBRARY_PATH=/ | ||
| + | |||
| + | mpirun -np 4 lmp_mpi_gpu -in in.lammps | ||
| + | </code> | ||
mstation/pwmat/pwmlffdemo.1724383960.txt.gz · 最后更改: 2024/08/23 11:32 由 pengge
